Search results for " coi"

showing 10 items of 326 documents

Modeling Stator Winding Inter-Turn Short Circuit Faults in PMSMs including Cross Effects

2020

Author's accepted manuscript. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This paper presents a detailed analysis of stator winding inter-turn Short Circuit (ITSC) faults, taking the cross effects in the three phases of a permanent magnet synchronous motor (PMSM) into account by considering insulation degradation resistances. A PMSM with series coils in eac…

010302 applied physicsComputer sciencebusiness.industryStator020208 electrical & electronic engineering02 engineering and technologyStructural engineeringFault (power engineering)01 natural sciencesFinite element methodVDP::Teknologi: 500::Elektrotekniske fag: 540law.inventionInductancelawElectromagnetic coil0103 physical sciencesTurn (geometry)0202 electrical engineering electronic engineering information engineeringbusinessSynchronous motorShort circuit
researchProduct

A General Mathematical Formulation for the Determination of Differential Leakage Factors in Electrical Machines with Symmetrical and Asymmetrical Ful…

2018

This paper presents a simple and general mathematical formulation for the determination of the differential leakage factor for both symmetrical and asymmetrical full and dead-coil windings of electrical machines. The method can be applied to all multiphase windings and considers Gorges polygons in conjunction with masses geometry in order to find an easy and affordable way to compute the differential leakage factor, avoiding the adoption of traditional methods that refer to the Ossanna's infinite series, which has to be obviously truncated under the bound of a predetermined accuracy. Moreover, the method described in this paper allows the easy determination of both the minimum and maximum v…

010302 applied physicsComputer scienceconcentrated winding020208 electrical & electronic engineering02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciTopology01 natural sciencesdifferential leakage factorIndustrial and Manufacturing EngineeringHarmonic analysismoment of inertiaControl and Systems EngineeringElectromagnetic coil0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringAsymmetrical windingdead-coil windingGörges polygonmultiphase windingsLeakage (electronics)
researchProduct

Determination of differential leakage factors in electrical machines with non-symmetrical full and dead-coil windings

2017

In this paper Gorges polygons are used in conjunction with masses geometry to find an easy and affordable way to compute the differential leakage factor of non symmetrical full and dead coil winding. By following the traditional way, the use of the Ossanna's infinite series which has to be obviously truncated under the bound of a predetermined accuracy is mandatory. In the presented method no infinite series is instead required. An example is then shown and discussed to demonstrate practically the effectiveness of the proposed method.

010302 applied physicsConcentrated windingSettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici01 natural sciencesDifferential leakage factorwindingsmoment of inertiaControl theoryElectromagnetic coil0103 physical sciencesunsymmetrical windingGörges polygonLeakage (electronics)Mathematics
researchProduct

An exact method for the determination of differential leakage factors in electrical machines with non-symmetrical windings

2016

An exact and simple method for the determination of differential leakage factors in polyphase ac electrical machines with non-symmetrical windings is presented in this paper. The method relies on the properties of Gorges polygons that are used to transform an infinite series expressing the differential leakage factor into a finite sum in order to significantly simplify the calculations. Some examples are shown and discussed in order to practically demonstrate the effectiveness of the proposed method.

010302 applied physicsElectronic Optical and Magnetic Material020208 electrical & electronic engineering02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciTopology01 natural sciencesElectronic mailElectronic Optical and Magnetic MaterialsDifferential leakage factorHarmonic analysiswindingDistribution functionmoment of inertiaElectromagnetic coil0103 physical sciences0202 electrical engineering electronic engineering information engineeringPolyphase systemGraphical modelnon-symmetrical windingElectrical and Electronic EngineeringGörges polygonLeakage (electronics)Mathematics
researchProduct

The helicoidal magnetic generator

2016

Recently helicoidal generator for the exploitation of sea wave energy has been proposed. This device can convert both the vertical and rotational movement of seawaves. The electrical energy generated by such a device must be converted and conditioned in order to match the instantaneous utility requirements and a power link from the sea to an interconnection is needed. In this paper, the authors propose a mathematical model of this device and preliminarily present a prototype of the machine.

010302 applied physicsInterconnectionEngineeringbusiness.industryLinear asynchronous generatorElectric potential energy05 social sciencesElectrical engineeringOcean EngineeringPermanent magnet synchronous generatorElectric machineSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciInductorOceanography01 natural sciencesPower (physics)Generator (circuit theory)Electromagnetic coil0502 economics and business0103 physical sciencesbusinessInstrumentation050203 business & managementEnergy (signal processing)Sea waves energy
researchProduct

Electromagnetic and Thermal Modelling for Calculating Ageing Rate of Distribution Transformers

2018

Prediction of the lifetime for transformers is very important for maintenance and asset management. Finite element analysis was performed on a 5 MVA distribution transformers with aluminium foil-type windings and voltage rating 6600 V/23000 V. Electromagnetic modelling is implemented on the full three-phase transformer to calculate distributed losses, taking the skin effect into account. To reduce the computational burden, the distributed losses in one phase are used to analyse temperature rise in one phase of the transformer. The temperature rise results were used to determine the ageing rate of the transformer. Further, the influence of ambient temperature and cooling on the temperature r…

010302 applied physicsMaterials science020209 energyNuclear engineeringchemistry.chemical_element02 engineering and technologyDistribution transformer01 natural sciencesFinite element methodElectromagnetic modellinglaw.inventionchemistryElectromagnetic coilAluminiumlaw0103 physical sciencesThermal0202 electrical engineering electronic engineering information engineeringSkin effectTransformer2018 21st International Conference on Electrical Machines and Systems (ICEMS)
researchProduct

A Planar Generator for a Wave Energy Converter

2019

This article presents a permanent magnet planar translational generator which is able to exploit multiple modes of sea wave energy extraction. Linear electrical generators have recently been studied for the exploitation of sea wave energy, but, to the best of our knowledge, no synchronous planar translational generator has been proposed. In this article, to maximize the energy extraction, we have considered all the potential modes of motion due to wave excitation and included them within the mathematical model of the proposed system. The principle of operation of the generator can be summarized as follows: the moving part (translator) of the generator is driven from the sea waves and induce…

010302 applied physicsPhysicsElectric machines linear generators wave energy convertersSettore ING-IND/11 - Fisica Tecnica AmbientaleElectromotive forceEnergy converterAcousticsElectric generatorSettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici01 natural sciencesElectronic Optical and Magnetic Materialslaw.inventionPlanarlawElectromagnetic coilMagnet0103 physical sciencesElectrical and Electronic EngineeringExcitationArmature (electrical engineering)
researchProduct

Control flow strategy in a receiver coil for nuclear magnetic resonance for imaging

2020

A mathematical discussion is introduced to describe the receiver coil characterizing a nuclear magnetic resonance for imaging, starting from a general shape of the conductor. A set of different inductance calculations have been introduced, varying the shape of the conductor. The inductance calculation led to a general expression of the magnetic field of a single coil characterized by a rectangular shape. A dynamic model of the receiver coil has been developed to represent the natural frequencies that characterize the operational bandwidth. A nonstationary control strategy is implemented to make a real time changing of the operational bandwidth. The frequency response of the coil generates …

010302 applied physicsPhysicsmedicine.diagnostic_testMechanical EngineeringAerospace EngineeringMagnetic resonance imaging01 natural sciencesTransfer function030218 nuclear medicine & medical imagingMagnetic fieldConductorInductanceReceiver coil03 medical and health sciences0302 clinical medicineNuclear magnetic resonanceControl flowMechanics of Materials0103 physical sciencesAutomotive EngineeringmedicineGeneral Materials ScienceJournal of Vibration and Control
researchProduct

Computer-aided analysis and design procedure for rotating induction machine magnetic circuits and windings

2018

The aim of this study is to present a new, accurate, and user-friendly software procedure for the analysis and rapid design of rotating induction machine windings, considering both the electric and the magnetic specifications of the machine itself. This procedure is a valid aid for quick first stage design without the necessity of using finite element method (FEM)-based design procedures. FEM can be used in a second design phase in order to refine the first stage results. The design procedure is hereafter outlined and some examples show its capability.

010302 applied physicsbusiness.industryComputer science020208 electrical & electronic engineeringAsynchronous machinesControl engineering02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici01 natural sciencesFinite element methodMagnetic circuitDesign phaseInduction machineSoftwareElectromagnetic coil0103 physical sciences0202 electrical engineering electronic engineering information engineeringMachine windingMagnetic circuitsElectrical and Electronic EngineeringbusinessComputer aided analysis and designAsynchronous machineryComputer aided analysi
researchProduct

Algorithmic Approach for Slot Filling Factors Determination in Electrical Machines

2018

In several industrial sectors, such as electric and hybrid traction, the demand for increasingly efficient and high power density electrical machines has grown considerably over the last few years. The improvement of slot filling factor of the electrical machines is an useful provision to satisfy this request. In particular, this topic has been the subject of interest for the industrial sector in recent years, since the technology of winding processes have evolved and allow an economically sustainable realization of windings with an ordered structure rather than randomly. The winding phase must be supported by an accurate design process in which it is possible to evaluate the maximum slot f…

0209 industrial biotechnologyOptimization AlgorithmComputer sciencemedicine.medical_treatmentMechanical engineeringFilling Factor OptimizationEnergy Engineering and Power Technology02 engineering and technologyHigh power density010501 environmental sciencesMagnetic wiresSettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici01 natural sciences020901 industrial engineering & automationmedicineElectrical and Electronic Engineering0105 earth and related environmental sciencesMagnetic WireFilling factorRenewable Energy Sustainability and the EnvironmentSlot Filling factorSense (electronics)Traction (orthopedics)WindingElectromagnetic coilDesign processRealization (systems)
researchProduct